如图,在平面直角坐标系中,直线
解:\((1)∵\)点\(A\)的坐标为\((m,2)\),\(AC\)平行于\(x\)轴, \(∴OC=2\),\(AC⊥y\)轴, \(∵OD= \dfrac {1}{2}OC\), \(∴OD=1\), \(∴CD=3\), \(∵\triangle ACD\)的面积为\(6\), \(∴ \dfrac {1}{2}CD⋅AC=6\), \(∴AC=4\),即\(m=4\), 则点\(A\)的坐标为\((4,2)\),将其代入\(y= \dfrac {k}{x}\)可得\(k=8\), \(∵\)点\(B(2,n)\)在\(y= \dfrac {8}{x}\)的图象上, \(∴n=4\); \((2)\)如图,过点\(B\)作\(BE⊥AC\)于点\(E\),则\(BE=2\), \(∴S_{\triangle ABC}= \dfrac {1}{2}AC⋅BE= \dfrac {1}{2}×4×2=4\), 即\(\triangle ABC\)的面积为\(4\).
解:\((1)∵\)点\(A\)的坐标为\((m,2)\),\(AC\)平行于\(x\)轴, \(∴OC=2\),\(AC⊥y\)轴, \(∵OD= \dfrac {1}{2}OC\), \(∴OD=1\), \(∴CD=3\), \(∵\triangle ACD\)的面积为\(6\), \(∴ \dfrac {1}{2}CD⋅AC=6\), \(∴AC=4\),即\(m=4\), 则点\(A\)的坐标为\((4,2)\),将其代入\(y= \dfrac {k}{x}\)可得\(k=8\), \(∵\)点\(B(2,n)\)在\(y= \dfrac {8}{x}\)的图象上, \(∴n=4\); \((2)\)如图,过点\(B\)作\(BE⊥AC\)于点\(E\),则\(BE=2\), \(∴S_{\triangle ABC}= \dfrac {1}{2}AC⋅BE= \dfrac {1}{2}×4×2=4\), 即\(\triangle ABC\)的面积为\(4\).
标签:系中,直角坐标,如图