如图,已知等腰三角形\(ABC\)的底角为\(30^{\circ}\),以\(BC\)为直径的\(⊙O\)与底边\(AB\)交于点\(D\),过\(D\)作\(DE⊥AC\),垂足为\(E\).\((1)\)证明:\(DE\)为\(⊙O\)的切线; \((2)\)连接\(OE\),若\(BC=4\),求\(\triangle OEC\)的面积.
\((1)\)证明:连接\(OD\),\(CD\),
\(∵BC\)为\(⊙O\)直径,
\(∴∠BDC=90^{\circ}\),
即\(CD⊥AB\),
\(∵\triangle ABC\)是等腰三角形,
\(∴AD=BD\),
\(∵OB=OC\),
\(∴OD\)是\(\triangle ABC\)的中位线,
\(∴OD/\!/AC\),
\(∵DE⊥AC\),
\(∴OD⊥DE\),
\(∵D\)点在\(⊙O\)上,
\(∴DE\)为\(⊙O\)的切线;
\((2)\)解:\(∵∠A=∠B=30^{\circ}\),\(BC=4\),
\(∴CD= \dfrac {1}{2}BC=2\),\(BD=BC⋅\cos 30^{\circ}=2 \sqrt {3}\),
\(∴AD=BD=2 \sqrt {3}\),\(AB=2BD=4 \sqrt {3}\),
\(∴S_{\triangle ABC}= \dfrac {1}{2}AB⋅CD= \dfrac {1}{2}×4 \sqrt {3}×2=4 \sqrt {3}\),
\(∵DE⊥AC\),
\(∴DE= \dfrac {1}{2}AD= \dfrac {1}{2}×2 \sqrt {3}= \sqrt {3}\),
\(AE=AD⋅\cos 30^{\circ}=3\),
\(∴S_{\triangle ODE}= \dfrac {1}{2}OD⋅DE= \dfrac {1}{2}×2× \sqrt {3}= \sqrt {3}\),
\(S_{\triangle ADE}= \dfrac {1}{2}AE⋅DE= \dfrac {1}{2}× \sqrt {3}×3= \dfrac {3}{2} \sqrt {3}\),
\(∵S_{\triangle BOD}= \dfrac {1}{2}S_{\triangle BCD}= \dfrac {1}{2}× \dfrac {1}{2}S_{\triangle ABC}= \dfrac {1}{4}×4 \sqrt {3}= \sqrt {3}\),
\(∴S_{\triangle OEC}=S_{\triangle ABC}-S_{\triangle BOD}-S_{\triangle ODE}-S_{\triangle ADE}=4 \sqrt {3}- \sqrt {3}- \sqrt {3}- \dfrac {3}{2} \sqrt {3}= \dfrac { \sqrt {3}}{2}\).
标签:BC,DE,垂足