自然常数e的由来
自然常数e的由来如下:
在18世纪初,数学大师莱昂哈德·欧拉发现了这个自然常数e。差简当时,社须设体有现州广欧拉试图解决由另一位数学家雅各布·伯努利在半个世纪前提出的问题。
伯努利的刻法怕她前源兰问题与复利有关。假设你在银行里存了一笔钱,银行每年以100%的利率兑换这笔钱。一年后,你会得到(1+100%)^1=2倍的收益。
现在假设银行每六个月结算一次利息,但只能提供利率的一半,即50%。在这种情况下,一年后的收益为(1+50%)^2=2.25倍。
根据这个规律,可以得到一条通式。如果假设n为利息复利的次数,那么利率宜适就是其倒数1/n。一年后的收益公式为(1+1/n)^n。如果n变得无限毁庆仔大,那(纤汪1+1/n)^n是否也会变得无限大?这就是伯须肉努利试图回答的问题,但直到50年后才由欧拉最终获得结果。
原来,当n趋于无穷大时,(1+1/n)^n并非也变得无穷大,而是等于2.718281828459……这是一个类似于圆周率的无限不循环小数,用字母e表示,被称为自然常数。
标签:由来,常数,自然