当前位置:酷百书>生活百科>函数周期性

函数周期性

2023-03-28 11:38:41 编辑:join 浏览量:608

函数周期性

函数周期性

1.函数周期性的关键的几个字“有规律地重复出现”。

概念的提出:

将日历中“星期”随日期变化的周期性的出现和正弦函数值随角的变化周期性的出现进行对比,寻求出两者实质:当“自变量”增大某一个值时,“函数值”有规律的重复出现。

出示函数周期性的定义:对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

“当自变量增大某一个值时,函数值有规律的重复出现”这句话用数学语言的表达.

2.定义:对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)

概念的具体化:

当定义中的f(x)=sinx或cosx时,思考T的取值。

T=2kπ(k∈Z且k≠0)

所以正弦函数和余弦函数均为周期函数,且周期为 T=2kπ(k∈Z且k≠0)

展示正、余弦函数的图象。

周期函数的图象的形状随x的变化周期性的变化。(用课件加以说明。)

强调定义中的“当x取定义域内的每一个值”

令(x+T)2=x2,则x2+2xT+T2=x2

所以2xT+T2=0, 即T(2x+T)=0

所以T=0或T=-2x

强调定义中的“非零”和“常数”。

例:三角函数sin(x+T)=sinx

cos(x+T)=cosx中的T取2π

3. 最小正周期的概念:

对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期。

对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得。所以正弦函数和余弦函数的最小正周期是2π。(说明:如果以后无特殊说明,周期指的就是最小正周期。)

在函数图象上,最小正周期是函数图象重复出现需要的最短距离。

4.例:求下列函数的周期:

(1)y=3cosx

分析:只要cosx中的自变量只要且至少增加到x+2π时,函数cosx的值才重复出现,因而函数3cosx的值也才重复出现,因此y=3cosx的周期是2π.(说明cosx前面的系数和周期无关。)

(2)y=sin(x+π/4)

分析略,说明在x后面的角也不影响周期。

(3)y=sin2x

分析:因为sin2(x+π)=sin(2x+2π)=sin2x, 所以自变量x只要且至少增加到x+π时,函数值就重复出现。所以原函数的周期为π。(说明x的系数对函数的周期有影响。)

(4) y=cos(x/2+π/4) (分析略)

(5)y=sin(ωx+φ) (分析略)

结论:形如y=Asin(ωx+φ) 或y=Acos(ωx+φ) (A,ω,φ为常数,A0, xR) 的函数的周期为T=(2π-φ)/ω

标签:周期性,函数

版权声明:文章由 酷百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.kubaishu.com/life/184968.html
热门文章