集合间的基本关系有哪些
1、子集是一个数学概念:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。符号语言:若∀a∈A,均有a∈B,则A⊆B。
2、如果集合A⊆B,存在元素x∈B,且元素x不属于集合A,我们称集合A与集合B有真包含关系,集合A是集合B的真子集(proper subset)。记作A⊊B(或B⊋A),读作“A真包含于B”(或“B真包含A”)。
3、如果两个集合S和T的元素完全相同,则称S与T两个集合相等,记为S=T 。
扩展资料:
集合的特性
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
参考资料来源:搜狗百科-集合
标签:集合,基本
版权声明:文章由 酷百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.kubaishu.com/life/123886.html