高数马勒戈壁定理是什么?
高数马勒戈壁指的是:费马定理、泰勒公式、拉格朗日定理、洛必达法则的简称。
费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费马提出。他断言当整数n>2时,关于坦困x,y,z的方程x^n+y^n=z^n没有正整数解。
泰勒公式,应用于数学、物理领域,是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值。
拉格朗日定理存在于多个学科领域中,分别为:微积分中的拉格朗日中值定理;数论中的四平方和定理;群论中的拉格朗日定理 (群论)。在微积分中,拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。
洛必达法则:
是在一禅握定条件下通过分子分母分别求导再求极限来确定未定式值的方法,因两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。
所以求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算,洛必达法则便是应用于这类极限计贺信庆算的通用方法。
标签:高数,马勒,戈壁
版权声明:文章由 酷百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.kubaishu.com/life/383356.html