2010年高考试题文科数学广东卷解析版
2010年高考试题——文科数学(广东卷)解析版
绝密★启用前试卷类型:B
2010年普通高等学校招生全国统一考试(广东卷)
数学(文科)
本试卷共4页,21小题,满分150分。考试用时120分钟。
注意事项:1.答卷时,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室、座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。
4.作答选作题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。
5.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式,其中是锥体的底面积,是锥体的高.
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若集合,则集合
A.B.C.D.
解:并集,选A.
2.函数的定义域是
A.B.C.D.
解:,得,选B.
3.若函数与的定义域均为R,则
A.与与均为偶函数B.为奇函数,为偶函数
C.与与均为奇函数D.为偶函数,为奇函数
解:由于,故是偶函数,排除B、C
由题意知,圆心在y轴左侧,排除A、C
在,故,选D
7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是
A.B.C.D.
10.在集合上定义两种运算和如下
那么
A.B.C.D.
解:由上表可知:,故,选A
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
(一)必做题(11~13题)
11.某城市缺水问题比较突出,为了制定节水管
理办法,对全市居民某年的月均用水量进行了
抽样调查,其中4位居民的月均用水量分别为
(单位:吨)。根据图2所示的程序框图,若分
别为1,1.5,1.5,2,则输出的结果为.
第一()步:
第二()步:
第三()步:
第四()步:,
第五()步:,输出
(二)选做题(14、15题,考生只能从中选做一题)
14.(几何证明选讲选做题)如图3,在直角
梯形ABCD中,DC∥AB,CB,AB=AD=,CD=,
点E,F分别为线段AB,AD的中点,则EF=
解:连结DE,可知为直角三角形。则EF是斜边上的中线,等于斜边的一半,为.
15.(坐标系与参数方程选做题)在极坐标系中,曲线与的交点的极坐标为.
17.(本小题满分12分)
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目新闻节目总计20至40岁401858大于40岁152742总计5545100
18.(本小题满分14分)
如图4,弧AEC是半径为的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC平面BED,FB=
(1)证明:EBFD
(2)求点B到平面FED的距离.
(1)证明:点E为弧AC的中点
19.(本题满分12分)
某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.
如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
解:设为该儿童分别预订个单位的午餐和个单位的晚餐,设费用为F,则F,由题意知:
画出可行域:
变换目标函数:
(2)当时,
当时,
当时,
f(x)=
c.当时,
此时:
21.(本小题满分14分)
已知曲线,点是曲线上的点,
标签:考试题,文科