在三角形ABC中,角A,B,C所对边长分别为a,b,c,若a平方+b平方=2c平方,则cosC的最小值为
若:a²+b²=2c²;c²=(a²+b²)/2
又因:c²=a²+b²-2abcosC
所以:(a²+b²)/2=a²+b²-2abcosC
a²+b²)/2=2abcosC
a²+b²=4abcosC
cosC=( a²+b²)/(4ab)
又因:a²+b²≥2ab (a>0;b>0)
所以:cosC≥2ab/(4ab)
cosC≥1/2
即:cosC的最小值为1/2.
标签:平方,ABC,2c
版权声明:文章由 酷百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.kubaishu.com/life/136995.html