什么是对数
对数的定义:
1.如果 a^x=N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作 x=logaN .其中,a叫做对数的底数,N叫做真数。且a>o,a≠1,N>0
2.特别地,我们称以10为底的对数叫做常用对数(common logarithm),并把log10N 记为 lgN.
3.称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并把logeN 记为 lnN.
零没有对数.[1]在实数范围内,负数无对数。在复数范围内,负数有对数。
如:㏑(-5)=㏑[(-1)*5]=㏑(-1)+㏑5=iπ+㏑5.
而事实上,当θ=(2k+1)π时(k∈Z),e^[(2k+1)πi]+1=0,这样,㏑(-1)的具有周期性的多个值,㏑(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。
例如:㏑(-5)=(2k+1)πi+㏑5。
loga1=0,logaa=1
[1]:http://www.pep.com.cn/gzsx/jszx_1/czsxtbjxzy/xkbsyjc/dzkb/bx1/201102/t20110217_1021396.htm
标签:对数
版权声明:文章由 酷百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.kubaishu.com/article/180080.html