《几何原本》有哪些历史意义
在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。
《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。并且《几何原本》中的命题1.47,证明了在西方是欧几里得最先发现的勾股定理,从而说明了欧洲是西方最早发现勾股定理的大洲。
论证方法上的影响:关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项。
扩展资料:
由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。
比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。
有些被欧几里得作为不证自明的公理,却难以自明。比如“第五平行公设”,欧几里得在《几何原本》一书中断言:“通过已知直线外一已知点,能作且仅能作一条直线与已知直线平行。 ”
这个结果在普通平面当中尚能够得到经验的印证,那么在无处不在的闭合球面之中(地球就是个大曲面)这个平行公理却是不成立的。俄国人罗伯切夫斯基和德国人黎曼由此创立了非欧几何学。
参考资料来源:百度百科--几何原本
标签:几何,原本