一个有n个顶点的无向连通图,最少有几条边
一、有n个顶点的强连通图最多有n(n-1)条边,最少有n条边。
首先,德衣员司兰雷群备妒有向连通的一个必要条件是图的无向底图连通,这意味着E>=n-1。
其次,证明E>n-1。因当E=n-1时,无向底图为树,任取两来自顶点s,t,从s到t有且只有一条无向路径,若有向路径s->t连通,则有向路径t->s必不存在。得证:
再次,证明E可以=n。设n个顶点v1,v2,...vn,顺次连接有向边v1v2,v2v3...vn-1vn,胜她vnv1,这个环是有向连360问答通的。
因此最少有n叫压景失新结福多弱打条边。
二、最多的情况:即n个顶点中许特两两相连,若不计方向,n个点两两相连有n代约众(n-1)/2条边,而由于强连通图是有向图,故每条边有两个方向,n(n-1)/2×2=n(n-1),故有n个顶点的强连通图最多有n(n-1)条边。
扩展资料:
有n个顶点的强连通图最多有n吃养卷构业承流买父阿(n-1)条边,最少有n条边。
(1)最多的情况:即n单个顶点中两两相连,若不计方向,秋散n个点两两相连有n(n伤开千创培这海成-1)/2条边,而由于强连通图是有向图,故每条边有两个方向,n(n-1)/2×2=n(n-1),故有n个顶点的强连通图最多有n(n-1)条边。
(2)低木校散最少的情况:即n书酒染个顶点围成一个圈,且圈上各边方向一致,即均为顺时针或良一口确感探者逆时针,此时有n条边。
下面举例说明:如图1所示,设ABCD四个点构成强连通图,探远院合则:
(1)边数最多有4×3=12条;
(2)边数最少有4条;
参考资料来源:百织良使肥验紧额虽新大市度百科-强连通图
标签:连通,顶点,几条