当前位置:酷百书>百科问答>在四棱台$ABCD-A_{1}B_{1}C_{1}D_{1}$中,底面$ABCD$是边长为$2$的菱形,$AA_{1}=A_{1}B_{1}=1$,$\angle BAD=120^{\circ}$,$AA_{1}\bot $平面$ABCD$.$(1)E$是棱$AD$的中点,求证:$B_{1}E$∥平面$CDD_{1}C_{1}$;$(2)$求四棱锥$C-ABB_{1}A_{1}$的体积.

在四棱台$ABCD-A_{1}B_{1}C_{1}D_{1}$中,底面$ABCD$是边长为$2$的菱形,$AA_{1}=A_{1}B_{1}=1$,$\angle BAD=120^{\circ}$,$AA_{1}\bot $平面$ABCD$.$(1)E$是棱$AD$的中点,求证:$B_{1}E$∥平面$CDD_{1}C_{1}$;$(2)$求四棱锥$C-ABB_{1}A_{1}$的体积.

2023-09-01 20:14:51 编辑:join 浏览量:566

在四棱台$ABCD-A_{1}B_{1}C_{1}D_{1}$中,底面$ABCD$是边长为$2$的菱形,$AA_{1}=A_{1}B_{1}=1$,$\angle BAD=120^{\circ}$,$AA_{1}\bot $平面$ABCD$.$(1)E$是棱$AD$的中点,求证:$B_{1}E$∥平面$CDD_{1}C_{1}$;$(2)$求四棱锥$C-ABB_{1}A_{1}$的体积.

在四棱台$ABCD-A_{1}B_{1}C_{1}D_{1}$中,底面$ABCD$是边长为$2$的菱形,$AA_{1}=A_{1}B_{1}=1$,$\angle BAD=120^{\circ}$,$AA_{1}\bot $平面$ABCD$.$(1)E$是棱$AD$的中点,求证:$B_{1}E$∥平面$CDD_{1}C_{1}$;$(2)$求四棱锥$C-ABB_{1}A_{1}$的体积.

$(1)$证明:连结$DC_{1}$,由$B_{1}C_{1}$∥$AD$,$E$是棱$AD$的中点,得$B_{1}C_{1}$∥$DE$且$B_{1}C_{1}=DE$,

故四边形$B_{1}EDC_{1}$为平行四边形,所以$B_{1}E$∥$C_{1}D$,

又$C_{1}D\subset $平面$CDD_{1}C_{1}$,$B_{1}E$⊄平面$CDD_{1}C_{1}$,

所以$B_{1}E$∥平面$CDD_{1}C_{1}$;

$(2)$取$AB$的中点$F$,连结$AC$,$CF$,因为底面$ABCD$是菱形,$\angle BAD=120^{\circ}$,

所以$CF\bot AB$,又$AA_{1}\bot $面$ABCD$,所以$AA_{1}\bot CF$,因为$AA_{1}\cap AB=A$,

所以$CF\bot $平面$ABB_{1}A_{1}$,即$CF$为四棱锥$C-ABB_{1}A_{1}$的高,且$CF=\sqrt{3}$,

而${S}_{直角梯形A{A}_{1}{B}_{1}B}=\frac{(1+2)×1}{2}=\frac{3}{2}$,

所以四棱锥$C-ABB_{1}A_{1}$的体积$V=\frac{1}{3}×\frac{3}{2}×\sqrt{3}=\frac{\sqrt{3}}{2}$.

标签:ABCD,AA,平面

版权声明:文章由 酷百书 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.kubaishu.com/answer/368738.html
热门文章