在四棱台$ABCD-A_{1}B_{1}C_{1}D_{1}$中,底面$ABCD$是边长为$2$的菱形,$AA_{1}=A_{1}B_{1}=1$,$\angle BAD=120^{\circ}$,$AA_{1}\bot $平面$ABCD$.$(1)E$是棱$AD$的中点,求证:$B_{1}E$∥平面$CDD_{1}C_{1}$;$(2)$求四棱锥$C-ABB_{1}A_{1}$的体积.
$(1)$证明:连结$DC_{1}$,由$B_{1}C_{1}$∥$AD$,$E$是棱$AD$的中点,得$B_{1}C_{1}$∥$DE$且$B_{1}C_{1}=DE$,
故四边形$B_{1}EDC_{1}$为平行四边形,所以$B_{1}E$∥$C_{1}D$,
又$C_{1}D\subset $平面$CDD_{1}C_{1}$,$B_{1}E$⊄平面$CDD_{1}C_{1}$,
所以$B_{1}E$∥平面$CDD_{1}C_{1}$;
$(2)$取$AB$的中点$F$,连结$AC$,$CF$,因为底面$ABCD$是菱形,$\angle BAD=120^{\circ}$,
所以$CF\bot AB$,又$AA_{1}\bot $面$ABCD$,所以$AA_{1}\bot CF$,因为$AA_{1}\cap AB=A$,
所以$CF\bot $平面$ABB_{1}A_{1}$,即$CF$为四棱锥$C-ABB_{1}A_{1}$的高,且$CF=\sqrt{3}$,
而${S}_{直角梯形A{A}_{1}{B}_{1}B}=\frac{(1+2)×1}{2}=\frac{3}{2}$,
所以四棱锥$C-ABB_{1}A_{1}$的体积$V=\frac{1}{3}×\frac{3}{2}×\sqrt{3}=\frac{\sqrt{3}}{2}$.
标签:ABCD,AA,平面