20道奥数题及答案 初一的拜托各位大神
2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值. 3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围. 4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值. 5.已知方程组 有解,求k的值. 6.解方程2|x+1|+|x-3|=6. 7.解方程组 8.解不等式||x+3|-|x-1||>2. 9.比较下面两个数的大小: 10.x,y,z均是非负实数,且满足: x+3y+2z=3,3x+3y+z=4, 求u=3x-2y+4z的最大值与最小值. 11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式. 12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短? 2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以 原式=-b+(a+b)-(c-b)-(a-c)=b. 3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时, |x+m|+|x-n|=x+m-x+n=m+n. 4.分别令x=1,x=-1,代入已知等式中,得 a0+a2+a4+a6=-8128. 5.②+③整理得 x=-6y, ④ ④代入①得 (k-5)y=0. 当k=5时,y有无穷多解,所以原方程组有无穷多组解;当k≠5时, y=0,代入②得(1-k)x=1+k,因为x=-6y=0,所以1+k=0,所以k=-1. 故k=5或k=-1时原方程组有解. <x≤3时,有2(x+1)-(x-3)=6,所以x=1;当x>3时,有 ,所以应舍去. 7.由|x-y|=2得 x-y=2,或x-y=-2, 所以 由前一个方程组得 |2+y|+|y|=4. 当y<-2时,-(y+2)-y=4,所以 y=-3,x=-1;当-2≤y<0时,(y+1)-y=4,无解;当y≥0时,(2+y)+y=4,所以y=1,x=3. 同理,可由后一个方程组解得 所以解为 解①得x≤-3;解②得 -3<x<-2或0<x≤1; 解③得x>1. 所以原不等式解为x<-2或x>0.9.令a=99991111,则 于是 显然有a>1,所以A-B>0,即A>B. 10.由已知可解出y和z 因为y,z为非负实数,所以有 u=3x-2y+4z 11. 所以商式为x2-3x+3,余式为2x-4. 12.小柱的路线是由三条线段组成的折线(如图1-97所示). 我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′ ;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短). 显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短. 追问: 能再给几个 应用题 吗?
标签:题及,奥数